
New integral operator for analytic functions

H. Özlem GÜNEY and Shigeyoshi OWA

Abstract

Let Ap(n) be the class of functions f(z) given by

f(z) = zp + ap+nz
p+n + ap+n+1z

p+n+1 + . . .

which are analytic in the open unit disc U. For f(z) ∈ Ap(n), new integral operators O−jf(z)
and Ojf(z) (j = 0, 1, 2, ....) using some integral operators are considered. For such O−jf(z)
and Ojf(z), some interesting properties of f(z) are discussed.

Keywords: Analytic function, integral operator, p-valently starlike of order α, p-valently con-
vex of order α, dominant, subordination, m different boundary points.
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ON CERTAIN APPLICATIONS OF GRUNSKY COEFFICIENTS

IN THE THEORY OF UNIVALENT FUNCTIONS

MILUTIN OBRADOVIĆ AND NIKOLA TUNESKI

Abstract. Let function f be normalized, analytic and univalent in the unit
disk D = {z : |z| < 1} and f(z) = z +

∑∞
n=2 anz

n. We denote by S the

class of all such functions. Using a method based on Grusky coefficients we
study several problems over the class S: upper bound of the third logarithmic
coefficient, upper bound of the coefficient difference |a4| − |a3|, upper bounds

of the second and the third Hankel determinant, upper bounds of the second
and the third Hankel determinant for inverse functions. Some of the obtained
results improve the previous ones.
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The Progress of Fekete-Szegö Problems Related to
Various Subclasses of Analytic Functions

Maslina Darus

Abstract

This article discusses on the progress of Fekete-Szegö problems for certain
subclasses of analytic functions. The most important results recorded dated in
1933 by Fekete and Szegö [1] by giving sharp results for the functional |a3 −
µa2

2
|of a Taylor series. That was for the class analytic univalent functions S.

Later, many tried to study for the subclasses of S, such as for the classes of
starlike, convex and close-to-convex (see for examples:[2, 3, 4, 5, 6]. Throughout
the decades, generalisation of subclasses of S began and many new results
related to Fekete-Szegö were solved. These include the ones with differential
operators, fractional calculus and the bi-univalent class of functions. Some
earlier works and new results will be presented.

2010 Mathematics Subject Classification: 30C45, 30C50.
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(p, q)–derivative on univalent functions associated
with subordination structure

Sh. Najafzadeh ∗1

1Department of Mathematics, Payame Noor University,
Post Office Box: 19395–3697, Tehran, Iran

October 2, 2021

Abstract

By means of Jackson’s (p, q)–derivative a new class of univalent functions based
on subordination is defined. We evoke some geometric properties such as coeffi-
cient estimate, convolution preserving, convexity and radii properties of this class
of functions are obtained.

Keywords: Univalent function, Coefficient bounds, Convolution, Subordina-
tion, Convexity, Radii of starlikeness and convexity.
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Nephroid starlikeness using hypergeometric
functions

Anbhu Swaminathan
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Abstract. Let D be the open unit disk in the complex plane C and A consist of analytic
functions f : D → C satisfying the normalization conditions f(0) = 0 and f ′(0) = 1.
Recently, the authors in [1, 2] introduced the Ma-Minda type function family

S∗Ne :=
{
f ∈ A : zf

′(z)
f(z)

≺ ϕNe(z) = 1 + z −
z3

3

}
associated with a 2-cusped kidney-shaped curve called nephroid given by(

(u− 1)2 + v2 − 4
9

)3
− 4v

2

3
= 0.

The authors in [1, 2] discussed in detail several geometrical and analytical properties of
the family S∗Ne.

In this talk, we adopt a novel technique that uses the starlikeness properties of the
hypergeometric functions (Gaussian and Kummer) to determine sharp estimates on β so
that each of the differential subordinations

p(z) + βzp′(z) ≺


√
1 + z;
1 + z;
ez;

imply p(z) ≺ ϕNe(z) := 1 + z − z
3

3 , where p(z) is analytic satisfying p(0) = 1. As applica-
tions, we establish conditions that are sufficient to deduce that f ∈ A is nephroid starlike
in D, i.e., f ∈ S∗Ne.

Keywords. Differential subordination, Starlike function, Lemniscate of Bernoulli, Car-
dioid, Nephroid
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The Fekete-Szego Theorem for Close-to-convex
Functions Associated with The Koebe Type Function 1

Sidik Rathi, Shaharuddin Cik Soh

Abstract

This paper deals with the class S containing functions which are analytic and univalent

in the open unit disc U = {z ∈ C : |z| < 1}. Functions f in S are normalized by f(0) = 0

and f ′(0) = 1 and has the Taylor series expansion of the form f(z) = z +

∞∑
n=2

anz
n. In this

paper we investigate on the subclass of S of close-to-convex functions denoted as

Cgα(λ, δ) where function f ∈ Cgα(λ, δ) satisfies Re{ eiλ zf
′(z)

gα(z)
} for |λ| < π

2 , cos(λ) > δ,

0 ≤ δ < 1, 0 ≤ α ≤ 1 and gα = z
(1−αz)2 . The aim of the present paper is to find

the upper bound of the Fekete-Szego functional |a3 − µa22| for the class Cgα(λ, δ).
The results obtained in this paper is significant in the sense that it can be used
in future research in this field, particularly in solving coefficient inequalities such
as the Hankel determinant problems and also the Fekete-Szego problems for other
subclasses of univalent functions.
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Fekete-szego problems, Close-to-convex function, Koebe function
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On the Upper Bound of the Third Hankel Determinant for Certain Class of 

Analytic Functions Related with Exponential Function. 

 

Luminita COTIRLA 

 

In the present paper we introduce a new class of analytic functions f in the open unit disk 

normalized by f(0) = f'(0)−1 = 0, associated with exponential functions. The aim of the present 

paper is to investigate the third-order Hankel determinant H_3(1) for this function class and 

obtain the upper bound of the determinant H_3(1). 
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On Certain Subclass of Starlike Functions with
Negative Coefficients Associated with Erdelyi-Kober

Integral Operator

Thomas Rosy, S.Prathiba

Abstract

In this research article, making use of Erdelyi-Kober integral operator, we
define a new subclass T a,c

µ (α, β, γ,A,B) of starlike functions with negative coef-
ficient.Various properties like coefficient estimates, neighbourhood results, inte-
gral means, partial sums and subordination results are examined for this class.

2010 Mathematics Subject Classification: 30C45.
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Erdelyi-Kober Integral operator.
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Hankel Determinant H2(3) for Certain Subclasses of
Univalent Functions

Andy Liew Pik Hern, Aini Janteng, Rashidah Omar

Abstract

Let S to be the class of functions which are analytic, normalized and uni-
valent in the unit disk U = {z : |z| < 1}. The main subclasses of S are starlike
functions, convex functions, close-to-convex functions, quasi convex functions,
starlike functions with respect to (w.r.t) symmetric points and convex functions
w.r.t symmetric points which are denoted by S∗,K,C,C∗, S∗

s ,Ks respectively.
In recent past, a lot of mathematicians studied about Hankel determinant for
numerous classes of functions contained in S. The qth Hankel determinant for
q ≥ 1 and n ≥ 0 is defined by Hq(n). H2(1) = a3 − a22 is greatly familiar
so called Fekete-Szegö functional. It has been discussed since 1930’s. Mathe-
maticians still have lots of interest to this, especially in an altered version of
a3 − µa22. Indeed, there are many papers explore the determinant H2(2) and
H3(1). From the explicit form of the functional H3(1), it holds H2(k) provided
k from 1-3. Exceptionally, one of the determinant that is H2(3) = a3a5 − a24.
From this determinant, it consists of coefficients of function f which belong to
the classes S∗

s and Ks so we may find the bounds of |H2(3)| for these classes.
Likewise, we got the sharp results for S∗

s and Ks for which a2 = 0 are obtained.
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Roper-Suffridge extension operators and
Janowski univalent functions

Andra Manu

Abstract

In this paper, we will present certain properties that are satisfied on the
unit ball Bn by the following Roper-Suffridge extension operators:

Φn,α,β(f)(z) =
(
f(z1), z̃

(f(z1)

z1

)α
(f ′(z1))β

)
, z = (z1, z̃) ∈ Bn,

where α, β ≥ 0, and

Φn,Q(f)(z) = (f(z1) + f ′(z1)Q(z̃), z̃
√
f ′(z1)), z = (z1, z̃) ∈ Bn,

where Q : Cn−1 → C is a homogeneous polynomial of degree 2. We will
show that the above mentioned extension operators preserve the g-parametric
representation, where the function g is given by g(ζ) = 1+Aζ

1+Bζ , ζ ∈ U and
−1 ≤ B < A ≤ 1. Also, these extension operators preserve the Janowski
starlikeness and the Janowski almost starlikeness.

Other particular cases will also be mentioned.
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Janowski starlikeness, Janowski almost starlikeness.
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Truncation on Infinitely small elements

Osman Hamza

Abstract

In this study, firstly we investigate the definition of truncation and its basic
properties. After that we give infinitely small elements and truncated Riesz
spaces and their relation between vector lattices and truncation.
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Logarithmic coefficients bounds for the inverse of
univalent functions

Navneet Lal Sharma
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(A joint work with S. Ponnusamy and K.-J. Wirths)

Abstract: Let S be the class of analytic and univalent functions in
the unit disk |z| < 1, that have a series of the form f(z) = z+

∑∞
n=2 anz

n.
Let F be the inverse of the function f ∈ S with the series expansion

F (w) = f−1(w) = w +
∞∑
n=2

Anw
n for |w| < 1/4.

The logarithmic inverse coefficients Γn of F are defined by the formula

log

(
F (w)

w

)
= 2

∞∑
n=1

Γn(F )wn.

In this talk, we will discuss the sharp bound for |Γn(F )| when f belongs
to S for all n ≥ 1. This result motivates us to carry forward similar
problems for some of its important geometric subclasses. In some cases,
we have managed to solve this question completely but in some other
cases it is difficult to handle for n ≥ 4. For example, in the case of
convex functions f , we investigated the logarithmic inverse coefficients
Γn(F ) of F satisfy the inequality

|Γn(F )| ≤ 1

2n
for n ≥ 1, 2, 3

and the estimates are sharp for the function l(z) = z/(1− z). Although
this cannot be true for n ≥ 10, it is not clear whether this inequality
could still be true for 4 ≤ n ≤ 9.

keywords: Univalent function, Inverse function, starlike and con-
vex functions, subordination, Inverse Logarithmic coefficients, Schwarz’s
lemma

This talk is based on the following article.
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Logarithmic coefficients bounds and coefficient
conjectures for subclasses of univalent functions

Teodor Bulboacă, Ebrahim Analouei Adegani

Abstract

It is well-known that the logarithmic coefficients play an important role in de-
velopment of the theory of univalent functions. If S denotes the class of functions

f(z) = z +
∞∑

n=2

anz
n analytic and univalent in the open unit disk U, then the logarith-

mic coefficients γn(f) of the function f ∈ S are defined by log
f(z)

z
= 2

∞∑
n=1

γn(f)z
n.

Based on some recent works we will discuss a few coefficient bounds conjectures
and some partial solutions for different subclasses of univalent functions. The proofs of
the main results involve an efficient method of Prokhorov and Szynal, Briot-Bouquet
differential subordinations, etc.

We mention that several researchers have subsequently investigated similar prob-
lems regarding the logarithmic coefficients and the coefficient problems like Analouei
Adegani, Ali, Vasudevarao, Alimohammadi, Cho, Ebadian, Kargar, Kumar, Obradović,
Ponnusamy, etc., to mention a few of them.
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A new subclass of analytic functions connected with
Mittag-Leffler-type Poisson distribution series

B. Venkateswarlu1, P.Thirupathi Reddy2 and Shashikala A3

Abstract

The object of this paper is to study the geometric properties such as the
coefficient bounds , radii of close-to- convex and starlikeness and convex linear
combinations for the class TSm

α,β(µ, γ, ς). Furthermore, we obtained integral
means inequalities for the functions of the defined class.

2010 Mathematics Subject Classification: 30C45, 30C50.

Key words and phrases: analytic, starlike,convex, integral means inequality,
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On Some Properties of a New Integral Operator

Nguyen Van Tuan, Roberta Bucur, Daniel Breaz

Abstract

For analytic functions in the open unit disk U , a new integral operator is
introduced. The main objective of this paper is to obtain univalence for the
given integral operator. Our main results contain some interesting corollaries
as special cases.
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EXTREMAL PROBLEMS FOR UNIVALENT
FUNCTIONS OF ONE AND SEVERAL COMPLEX

VARIABLES

Cristea (Deaconu) Daria-Roxana

Abstract

The paper entitled ”Extremal Problems for Univalent Functions of One and
Several Complex Variables” studies problems about extreme and support points
of various subsets of H(U), where U is the unit disc in C. We will investigate
some problems about support points for different subsets of H(Bn), where Bn

is the Euclidean open unit ball in Cn. This paper is structured in four parts.
The first part, ”Introductory notions”, contains basic notions related to

holomorphy in the complex plane.
The second part, ”Univalent functions on the unit disc in C”, presents four

families of normalized univalent functions on U which have different (geomet-
rically) properties. Moreover, this part also presents the class of holomorphic
functions which have positive real part.

The part entitled ”Extremal problems for univalent functions” studies sig-
nificant problems concerning the extreme and support points for the classes of
functions introduced in the previous part. The theory of Loewner chain is very
useful in our study.

The last part, ”Univalent mappings on Bn”, contains general results about
univalent mapping on Bn (n ∈ N, n ≥ 2). Also, it presents fundamental
differences between the one dimensional case and the n-dimensional case in the
study of univalent mappings. Moreover, this part presents a modern method
due to F. Bracci which allows us to deduce that there exists bounded support
points of a special family of normalized univalent mapping on B2.

The last part of this paper contains further research directions as the study
of extremal problems of compact subsets S(Bn). Furthermore, this paper
presents significant open problems as the general structure of the sets exS,
suppS, exS∗(Bn), suppS∗(Bn).
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Bohr Radius for Goodman-Ronning Type Harmonic
Univalent Functions

S.Sunil Varma and Thomas Rosy

Abstract

Let H denote the class of harmonic univalent functions f = h + g defined
on the unit disk ∆ = {z ∈ C : |z| < 1} where h and g are analytic functions in
∆ with Taylor’s series expansion h(z) = z+

∑∞
n=2 anz

n and g(z) =
∑∞

n=1 bnz
n

about the origin with |b1| < 1. Denote by GH(γ) the subclass of Goodman-
Ronning type harmonic univalent mappings introduced and studied in [3]. Let
G0

H(γ) be the subclass of GH(γ) consisting of functions f = h+g where h(z) =

z −
∑∞

n=2 |an|zn and g(z) =
∑∞

n=2 |bn|zn. In this paper we obtain the sharp
Bohr radius, Bohr-Rogonoski radius, improved Bohr-radius and refined Bohr
radius for the functions in the class G0

H(γ).

2010 Mathematics Subject Classification: 30C45
Key words and phrases:Harmonic mappings, univalent functions,

Goodman-Ronning type functions, Bohr radius, Bohr-Rogonoski radius

References

[1] Abu Muhanna.Y, Bohr’s phenomenon in subordination and bounded harmonic
classes Comp.Var. Ellip. Eqns., vol. 55, no. 11, 2010, 1071 - 1078.

[2] Thomas Rosy, Adolph Stephen.B, and Subramanian.K.G, Goodman-Ronning
type harmonic univalent functions Kyungpook J., vol. 41, no.1, 2001, 45 - 54.

[3] Molla Basir Ahamed, Vasudevarao Allu and Himadri Halder Bohr radius for
certain class of close-toconvex harmonic mappings, Anal. and Math.Phy., vol
11, no.3, 2021, 1 - 30.

S.Sunil Varma
University of Madras
Assistant Professor
Department of Mathematics
Madras Christian College, Chennai, India.
e-mail:sunilvarma@mcc.edu.in

Thomas Rosy
University of Madras
Associate Professor
Department of Mathematics
Madras Christian College, Chennai, India.
e-mail: thomas.rosy@gmail.com



1

On Brannan and Clunie’s Conjecture for domains
bounded by Conic sections involving q−difference

operators

S. Kavitha

Abstract

In the present investigation, the author obtain initial coefficient bounds for
the bi-close-to-convex functions in the function class Σ of bi-univalent functions
defined in the open unit disk, which are associated with q−difference operator
related to conic sections. We also obtain the Fekete-Szegö coefficient inequalities
for the class of functions defined in this article. We also verify Brannan and
Clunie’s conjecture |a2| ≤

√
2 for our classes.
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Classes with Negative Coefficient Involving q-Derivative
Operator

Andy Liew Pik Hern, Aini Janteng, Rashidah Omar

Abstract

In this paper, we introduce classes with negative coefficient involving q-
derivative which are q-starlike and q-convex, denoted by S∗qT (α, β) andKqT (α, β)
of function f which are analytic and univalent in the open unit disk D = {z :
|z| < 1} given by f(z) = z −

∑∞
n=2 anz

n, z ∈ D. The coefficient estimates and
growth results are obtained for these classes.
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Analytic Classes with Probability distribution

The purpose of the present paper is to introduce a generalized discrete prob-
ability distribution in order to develop its connections with the normalized an-
alytic subclasses whose coefficients are probabilities of the discrete probability
distribution. We will explore some applications of this distribution with respect
to the univalent functions. Moreover, we will derive different properties of these
analytic classes such as coefficient bounds and integral preserving properties by
using the techniques of convolution and subordination.

1
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Toeplitz Determinants for a Subclass of Analytic
Functions Involving q-Derivative Operator

Part Leam Loh, Aini Janteng, See Keong Lee

Abstract

Let A to be the class of analytic functions in the open unit disk D = {z ∈
C : |z| < 1} with f(z) = z +

∑∞
n=2 anz

n . The class Kq is a subclass of
A involving q-derivative operator. The paper investigates a study of finding
estimates for coefficient inequalities and Toeplitz determinants whose elements
are the coefficients an for f ∈ Kq.
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New Subclasses of Bi-Univalent Functions based on the
Fibonacci Numbers

Munirah Rossdy, Rashidah Omar, Shaharuddin Cik Soh

Abstract

In this work, by using the Al-Oboudi differential operator and the rule of
subordination, we introduced the new subclasses Dn,ρ

Σ,δ(Φ) and Fn,αΣ,δ (Φ) of the
bi-univalent functions. Likewise, we use the Fibonacci numbers to derive the
initial coefficients bounds for |a2| and |a3| of the bi-univalent function subclasses.
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On special differential subordinations using fractional
integral of Sălăgean and Ruscheweyh operators

Alina Alb Lupaş

Abstract

In the present paper a new operator denoted by D−λ
z Lnα is defined using

the fractional integral of Sălăgean and Ruscheweyh operators. By means of the
newly obtained operator, a new subclass of analytic functions in the unit disc
denoted by Sn (δ, α, λ) is introduced and various properties and characteristics
of this class are derived making use of the concept of differential subordination.
Also, several interesting differential subordinations are established regarding
the operator D−λ

z Lnα.
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[16] Alb Lupaş, A. Applications of a Multiplier Transformation and Ruscheweyh
Derivative for Obtaining New Strong Differential Subordinations. Symmetry
2021, 13, 1312. https://doi.org/10.3390/ sym13081312.

[17] Ibrahim, R. W. On a class of analytic functions generated by fractional integral
operator. Concrete Operators 2017, 4(1), 1-6. https://doi.org/10.1515/conop-
2017-0001.

[18] Szatmari, E. On a Class of Analytic Functions Defined by a Fractional Operator.
Mediterr. J. Math. 2018 15, 158. https://doi.org/10.1007/s00009-018-1200-2.

Alina Alb Lupaş
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On Certain Classes of Analytic functions of Complex
order defined by Erdelyi-Kober Integral operator

Thomas Rosy, Asha Thomas

Abstract

In this paper, we consider new subclasses TSn(µ, a, b, ℓ, τ, γ) and TRn(µ, a, b, ℓ, τ, γ)
of analytic univalent functions defined by Erdelyi-Kober integral operator. We
obtain coefficient inequalities, inclusion relationships involving the (n, δ)-neighborhoods,
partial sums and integral mean inequalities for the functions that belongs to
these classes. Also, subordinating factor sequence for the functions in the classes
Sn(µ, a, b, ℓ, τ, γ) and Rn(µ, a, b, ℓ, τ, γ) are derived.
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Remarks on Some Convex Combinations of
Graham-Kohr Extension Operators

Eduard Ştefan Grigoriciuc

Abstract

Starting from a result proved by P.N. Chichra and R. Singh [1, Theorem 2]
which says that if a function f is starlike with the property that Re[f ′(z)] > 0,
then (1 − λ)z + λf(z) is also starlike on the unit disc U , for all λ ∈ (0, 1),
we discuss in this paper about convex combinations of biholmorphic mappings
on the Euclidean unit ball in the case of several complex variables. Moreover,
we consider not only biholomorphic mappings, but also convex combinations of
extension operators. The main extension operator that will be considered in
this paper is the extension operator defined by I. Graham and G. Kohr in [3].
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On a subclass of close to convex functions

Adam Lecko, Gangadharan Murugusundaramoorthy, Srikandan
Sivasubramanian

Abstract

Let H be the class of all holomorphic functions in the open unit disc D :=
{z ∈ C : |z| < 1}, and A the subclass of H of functions h ∈ H with the
normalisation h(0) = h′(0)− 1 = 0. Thus functions h ∈ A has representation

h(z) = z +

∞∑
n=2

anz
n, z ∈ D.

Denote S the subclass of A consisting of univalent functions.
In this talk, we define and investigate a subclass close-to-convex functions

evolving from Robertson’s analytic condition for starlike functions with respect
to a boundary point, combined with subordination. Examples of some new
subclasses are presented. Initial coefficient estimates are given and a Fekete-
Szegö inequality is obtained . Differential subordinations involving these newly
defined subclasses are also established.
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Some geometric aspects of non-linear resolvents
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Let f belongs to the set of all infinitesimal generators of one-
parameter semigroups of holomorphic self-mappings on the open
unit disk vanishing at zero. Denote J =

{
(I + rf)−1, r > 0

}
, the

family of resolvents of such generators. The aim of my talk is to
present properties of this family in the spirit of geometric function
theory obtained in [1–2].

We discovered, in particular, that resolvents form an inverse
Löwner chain of hyperbolically convex functions. Moreover, every
resolvent is a starlike function of order that grows from 1

2 to 1. In
turn, this implies that the family of normalized resolvents converges
to the identity map. These results follow from distortion and cover-
ing theorems for resolvents we establish. Also, any resolvent admits
quasiconformal extension to the complex plane C. We prove that
any element of J is also a generator and obtain some characteristics
of semigroups generated by them. The existence/non-exoistence of
repelling fixed points of resolvents is also studied.
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